Экологически безопасная технология обезвреживания и утилизации хромсодержащих отходов гальванического производства

проблема:

В производственном цикле предприятий судостроения и судоремонта, широко применяются различные гальванические процессы, которые при существующих технологиях нейтрализации приводят к образованию большого объема жидких (сточные воды, отработанные электролиты и промывные воды), и твердых отходов I-го класса опасности – гальваношламов, которые необходимо обезвреживать и утилизировать.

В связи с этим возникает необходимость в разработке и промышленной реализации новых технологий обращения с отходами гальванического производства позволяющих обеспечить экологическую безопасность производства, снизить количество промышленных стоков и твердых отходов, провести их утилизацию и переработку.

ПРЕДЛАГАЕМАЯ ТЕХНОЛОГИЯ:

- Позволяет утилизировать отработанные электролиты хромирования с получением продуктов, пригодных для дальнейшего использования в производстве.
- Применение данной технологии позволит уменьшить экологические риски предприятия и снизить финансовые расходы в виде уменьшения платы за питьевую воду, идущую на разбавление стоков и отработанных электролитов при их сливе, а также обнулении расходов, связанных с хранением отработанных электролитов.

ОСНОВНЫЕ ЭТАПЫ ОЧИСТКИ И УТИЛИЗАЦИИ ХРОМСОДЕРЖАЩИХ ПРОМЫШЛЕННЫХ СТОКОВ ГАЛЬВАНИЧЕСКОГО ПРОИЗВОДСТВА

ОТБОР ХРОМСОДЕРЖАЩИХ ПРОМЫВНЫХ ВОД И ОТРАБОТАННЫХ ЭЛЕКТРОЛИТОВ ГАЛЬВАНИЧЕСКОГО ПРОИЗВОДСТВА,

анализ на содержание химических элементов

НЕЙТРАЛИЗАЦИЯ ПРИ ПОМОЩИ СУЛЬФИТА НАТРИЯ И ЖЕЛЕЗНОГО КУПОРОСА

КОНЦЕНТРИРОВАННЫЙ ЖИДКИЙ ОСАДОК (СУСПЕНЗИЯ) ПОДЛЕЖАЩИЙ ТЕРМООБРАБОТКЕ

РЕАКЦИЯ АЛЮМИНОТЕРМИЧЕСКОГО ВОССТАНОВЛЕНИЯ

СЛИТОК

шлак

РЕАГЕНТНАЯ ОБРАБОТКА ЭЛЕКТРОЛИТА ХРОМИРОВАНИЯ

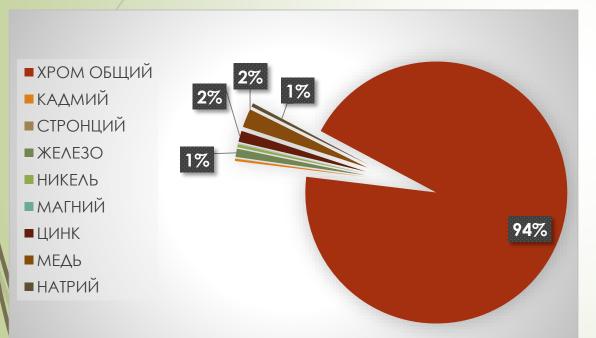
ОСУЩЕСТВЛЯЕТСЯ ПУТЕМ ПЕРЕВОДА ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ В МАЛОРАСТВОРИМЫЕ СОЕДИНЕНИЯ:

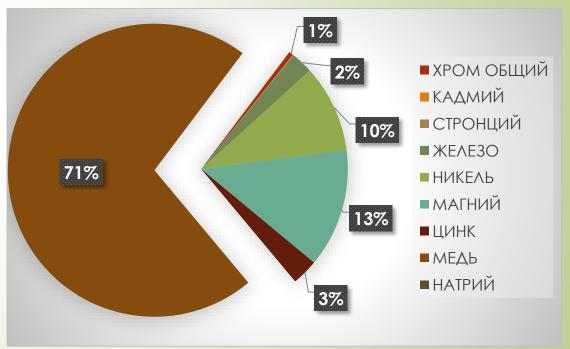
1 СТАДИЯ: ВОССТАНОВЛЕНИЕ ШЕСТИВАЛЕНТНОГО ХРОМА ДО ТРЕХВАЛЕНТНОГО

- В качестве реагента-восстановителя используется:
- сульфит натрия Na₂SO₃ в расчете 3,63 мг/1 мг Cr 6+
- железный купорос FeSO₄ в расчете 16 мг/1 мг Cr 6+
- Наибольшая скорость реакции и полнота ее прохождения осуществляется корректировкой рН до 2,5 ед. 10 % водным раствором серной кислоты

2 СТАДИЯ: ОСАЖДЕНИЕ ТРЕХВАЛЕНТНОГО ХРОМА В ВИДЕ ГИДРОКСИДА

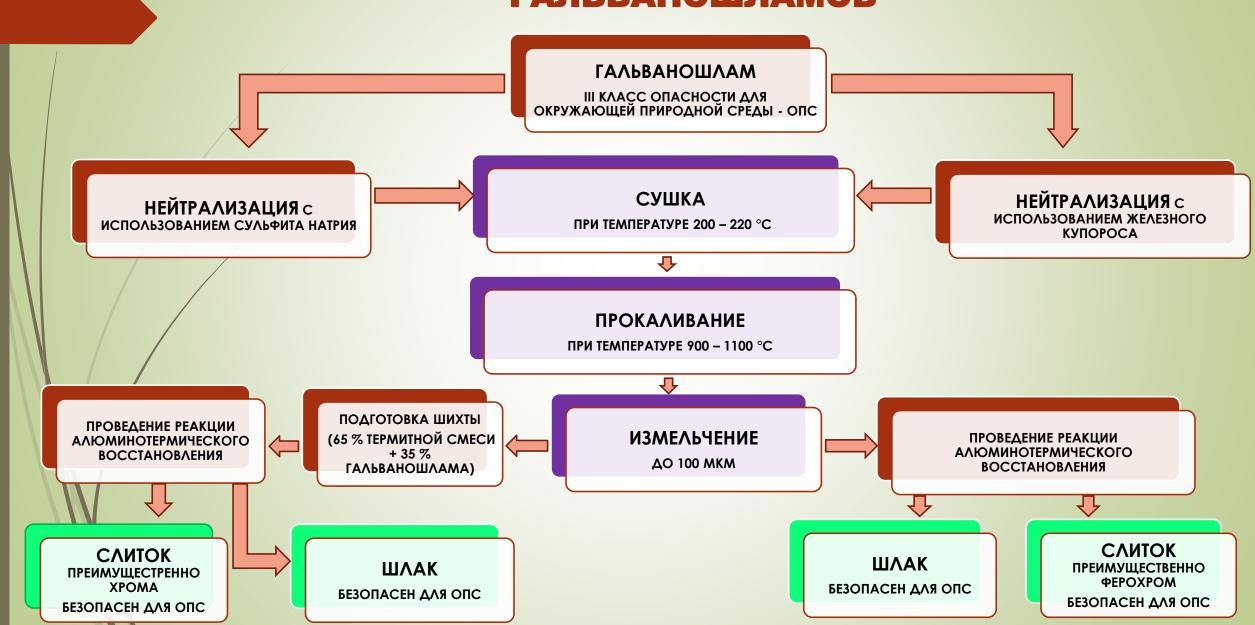
- Осаждение гидроксида хрома проводится подщелачиванием 10 % раствором NaOH до величины рН 8,5 9
- Гидравлическая крупность оседающих фракций гидроксида хрома: до 0,1-0,2 мм/с




РЕЗУЛЬТАТЫ: Концентрация металлов в пробах электролита до и после реагентной обработки

(Определение проводилось методом атомно-абсорбционного анализа на спектрофотометре Thermo Solaar M. GF95Z США

Cr - 7066,8 мг/л; Cd - 22,18 мг/л; Sr - 1,39 мг/л;Fe – 76,41 мг/л; Ni – 27,23 мг/л; Mg – 4,18 мг/л; Zn – 102,6 мг/л; Na – 33,36 мг/л; Cu – 172,5 мг/л.



Arr Cr - 0.01 MF/J; Cd < 0.001 MF/J; Sr < 0.001 MF/J; Fe < 0.05 мг/л; Ni - 0.2 мг/л; Mg -0.272 мг/л; Zn -0.06 мг/л; Cu - 1.48 мг/л.

Анализ проб раствора, полученного после реагентной обработки электролита, на содержание хрома показал соответствие полученных результатов нормам ПДК.

ТЕХНОЛОГИЧЕСКАЯ СХЕМА УТИЛИЗАЦИИ ПОЛУЧЕННЫХ ГАЛЬВАНОШЛАМОВ

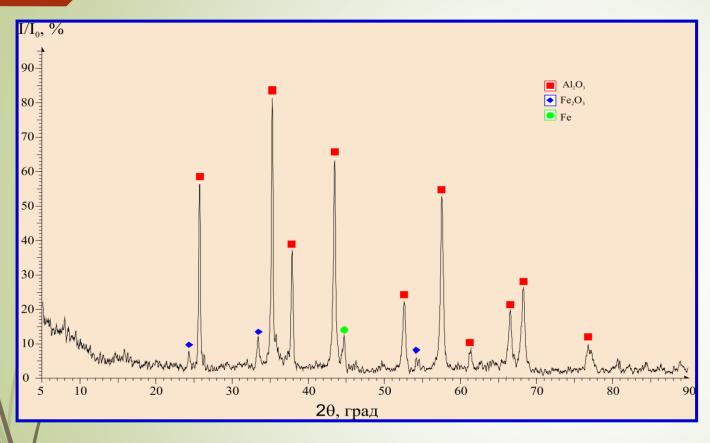
ЭТАПЫ УТИЛИЗАЦИИ ГАЛЬВАНОШЛАМОВ МЕТОДОМ АЛЮМИНОТЕРМИЧЕСКОГО ВОССТАНОВЛЕНИЯ

ЭЛЕМЕНТНЫЙ СОСТАВ МЕТАЛЛИЧЕСКОГО СЛИТКА И ШЛАКА, полученных после алюминотермической обработки

Рентгено-флуоресцентный метод анализа на Shimadzu EDX 800 HS

Элементный состав металлического слитка, %

Fe	Cr	Al	Cu	Mn	Si	S	Ni	Мо
77,699	13,498	3,918	2,748	0,924	0,695	0,402	0,095	0,021


Элементный состав алюминотермического шлака, %

Al ₂ O ₃	Fe ₂ O ₃ , Fe	Cr	Si	Mn	Cu	S	Ba	Zn	Sr	Ni
78,639	10,722	6,698	1,199	0,802	0,730	0,666	0,392	0,098	0,041	0,012

Элементный анализ металлического слитка позволяет утверждать, что в результате алюминотермического восстановления образуется феррохром, пригодный к дальнейшему использованию в черной металлургии.

ФАЗОВЫЙ СОСТАВ АЛЮМИНОТЕРМИЧЕСКОГО ШЛАКА

определяли на рентгеновском дифрактометре D8 ADVANCE (Германия)

Основными компонентами шлака являются:

 Al_2O_3 – корунд; оксид железа Fe_2O_3 и элементарное железо. Хром, марганец и другие металлы присутствуют в шлаке в небольших количествах.

Результаты изучения свойств полученного шлака позволяют прогнозировать его дальнейшее использование в качестве абразивного материала, так как по химическому составу шлак аналогичен абразивам, используемым в пескоструйных установках.

Технология обеспечивает практически полное извлечение хрома (Cr)

- В результате реагентной обработки получают:
 - Гальваношлам, пригодный для дальнейшей утилизации методом алюминотермии;
- В результате утилизации методом алюминотермии получают продукты, безопасные для окружающей природной среды:
 - Безопасный для окружающей природной среды и пригодный к дальнейшему использованию феррохром;
 - Абразивный материал, пригодный к использованию в пескоструйной технике.