ОТЗЫВ

официального Евгения оппонента Валентиновича Полякова диссертационную работу Эдуарда Анатольевича Токарь «Извлечение радионуклидов Cs-137 высокоминерализованных щелочных сред резорцинформальдегидных соискание учёной степени кандидата химических наук по специальностям - 1.4.4. Физическая (химические науки), и 1.5.15. Экология (химические науки).

Актуальность. Необходимость переработки старых радиоактивных отходов и кубовых остатков от кондиционирования жидких радиоактивных отходов атомных электростанций ставит перед радиохимической наукой актуальную проблему создания и обоснования перспектив применения в технологической практике селективных сорбционных материалов с высокой ёмкостью к отдельным группам радионуклидов – продуктов деления, прежде всего Cs-134,137. Кубовые остатки АЭС представляют собой щелочные растворы и пульпы с общим солесодержанием 300-400 г/л, рН 11-14. Основной солевой фон кубовых остатков АЭС - нитраты натрия и калия, бораты щелочных металлов, соли щавелевой и других органических кислот, комплексоны, ПАВ, нефтепродукты и др. Основной вклад (90-95%) в общую активность кубовых остатков вносят радионуклиды ^{134,37}Сs. Остальная часть активности приходится, в основном, на радионуклид 60Со. Для переработки осветлённой части кубовых остатков применяют сорбенты класса берлинской лазури. смолы. Последние резорцинформальдегидные преимуществами перед неорганическими сорбентами в том, что могут быть подвергнуты более глубокой окислительной деструкции с уменьшением объёмов остатка на захоронение. Но у резординформальдегидных смол не решена проблема их окислительной устойчивости в щелочных средах, приводящая к значительному сокращению ресурса смолы и образованию вторичных продуктов растворения полимера. Решению задачи повышения химической стойкости резорцинформальдегидных смол, разработке новых технологических подходов по уменьшению времени контакта ионита с щелочным раствором при сохранением высокой эффективности извлечения радионуклидов Cs посвящена обсуждаемая диссертационная работа.

Структура и основное содержание работы. Диссертация состоит из введения, четырёх глав, выводов и списка литературы. Содержание диссертации изложено на 154 страницах машинописного текста, содержит 30

таблиц, 51 рисунок. Список использованной литературы включает 186 наименований.

Во введении приведено обоснование актуальности работы, сведения по степени разработанности темы исследований, сформулирована цель и задачи исследований, показаны научная новизна и практическая значимость результатов работы, представлены основные положения, выносимые на защиту, сведения об апробации работы.

Первая глава содержит литературный обзор современного состояния проблем сорбционной очистки ЖРО, образующихся в процессе деятельности отечественных объектов ядерного промышленного комплекса. Охарактеризованы типы радиоактивных отходов, их химический состав и особенности сорбционного извлечения из них Cs-134/137 сорбентами различного типа. Весьма информативной является обобщение по сорбционным характеристикам большинства известных отечественных сорбентов с высокой селективностью к ионам цезия (табл. 5,6 диссертации). Акцент сделан на переработку высокоминерализованных жидких сред с использованием резорцинформальдегидных ионообменных смол.

Во второй главе приведено описание экспериментального оборудования, объектов исследования, современных методов физико-химического анализа объектов исследования, методик выполнения сорбционных экспериментов и синтеза резорцинформальдегидных смол (РФС) с стандартной и повышенной удельной поверхностью. Непористые иониты получены в результате реакции поликонденсации резорцина и формальдегида в щелочной среде с последующим отверждением при заданной температуре в атмосфере воздуха. Пористые образцы получали двумя способами, - удалением неорганического наполнителя (CaCO3, вносимый в еще жидкую олигомерную смесь) из твёрдой РФС азотной кислотой; — проведением полимеризации реакционной дисперсионной среды в виде жидкой олигомерной смеси в присутствии толуола с его удалением на стадии отверждения.

Третья глава диссертации содержит три раздела, характеризующие результаты влияния термообработки, увеличения отношения резорцин/формальдегид (Р/Ф) в смоле, а также влияния некоторых катионов и органических веществ в имитатах реальных ЖРО на эффективность сорбционного извлечения цезия. В результате физико-химического анализа состава функциональных групп смол установлено, что с ростом температуры отверждения РФС до 210 °С улучшаются их селективность и химическая устойчивость к воздействию щелочных растворов с рН ≥13.

Используя метод ЯМР (¹³C) и химического анализа растворов установлено, что увеличение количества резорцина (роста отношения Р/Ф в

смоле) способствует повышению степени сшивки ионитов и их химической стабильности в щелочных средах за счёт почти двухкратного снижения растворимости полимера. В этом же направлении растёт механическая прочность РФС. Изотермы кинетики сорбции Cs(I) образцами РФС имеют характерный вид кривых с максимумом (рис.14, 20 диссертации), положение которого определяется соотношением скоростей конкурирующих процессов извлечения ионов цезия и удаление молекулярных фрагментов полимера в щелочной раствор.

Важный результат получен в 3-м разделе главы, в котором приведены равновесные и динамические характеристики ионообменной сорбщии ряда щелочноземельных катионов И образцами РФС, автореферата и табл.16,17 диссертации. Показано негативное воздействие ионов K(I) на эффективность сорбционного извлечения цезия из-за близости радиусов и плотности зарядов нонов Cs(I)-K(I). противоположность этому, влияние органических веществ комплексообразователей на селективность РФС к ионам цезия не отмечена. Для всех исследованных РФС установлено, что лимитирующей стадией ионообменного процесса является диффузионный массоперенос в объеме зерна полимера. Это, отличие от внешнедиффузионного переноса требует существенно большего времени контакта для достижения равновесных характеристик сорбции и является негативным фактором.

На основании полученных данных диссертантом сделан вывод о необходимости изменения пористой структуры у ионитов с целью повышения коэффициента гелевой диффузии ионов цезия.

Четвёртая глава содержит результаты исследования сорбционноселективных свойств пористых РФ-смол в статических и динамических условиях и состоит из 4х разделов.

В первом, 4.1. при изучении сорбционных свойств пористых РФС РФС-и-210-1/1, РФС-Са-10 и РФС-Са-25, полученных путём выщелачивания СаСО3 установлен рост устойчивости к растворению, но снижение значений Кd Сs-137 во втором и третьем сорбционных циклах, уменьшение коэффициента внутренней диффузии. Статика сорбции описывается изотермой Лэнгмюра для моноэнергетических обменных центров. Это вызвано, по мнению диссертанта усилением химического растворения смол от цикла к циклу. Степень десорбции Сs-137 раствором HNO3, с концентрацией 1,0 моль/л, для всех образцов сопоставима и превышает 95%. Автором установлен оптимум добавки CaCO3, не более 10 масс. %, превышение которого усиливает процессы растворения ионитов.

Раздел 4.2 представляет данные сорбционной активности пористых РФС, поверхность которых модифицирована толуолом на стадии полимеризации. Получены пористые иониты с нанометровым размером пор. Статика сорбции ионов цезия ими описывается изотермой Лэнгмюра для моноэнергетических обменных центров. Емкость этих РФС в несколько раз выше, чем полученных введение карбоната кальция. Коэффициенты внутренней диффузии для материалов этого синтеза на порядок выше, чем у модифицированных карбонатом кальция, табл.25, стр113 диссертации. Недостатки таких ионитов являются продолжением их достоинств: высокая пористость приводит к повышенной окисляемости и как следствие, растворимости ионитов в щелочных средах, в особенности когда масса толуола при синтезе РФС превосходит 25 масс.%.

разделе 4.3 диссертант обсуждает результаты исследования термодинамических параметров сорбции Cs(I) на ионитах, обладающих наилучшей совокупностью сорбционных свойств в статике и динамике. Исследование приведены для температур раствора 30, 50 и 70 °C в статических условиях с непрерывным перемешиванием для трёх выбранных образцов ионитов. Формально-кинетический анализ изотерм кинетики сорбции по методу ограниченного объёма показал, что наиболее точное совпадение расчёта и эксперимента дает описание по уравнению реакции псевдо-второго порядка. В главе приведены результаты определения термодинамических параметров ионообменного процесса, включающие ΔG, ΔH и ΔS, табл.28 диссертации.

Раздел 4.4 посвящен вопросам динамики сорбции ионов цезия выбранной группой РФС из щелочных растворов. Общей чертой ионитов при извлечении Сѕ-137 в динамическом режиме является рост коэффициента очистки при увеличении числа циклов сорбция-десорбция. Пористые образцы РФС показывают в два раза более высокий коэффициент очистки и более полное извлечение Сѕ-137 из щелочных растворов. Диссертант дополнительно к задачам исследования проанализировал экспериментально параметры извлечения Сѕ(Ш) из растворов- имитаторов ЖРО, содержащих ионы Со(П), Си(П), Ni(П), Сr(ПІ) в качестве представителей элементов конструкционных материалов в виде комплексов с ЭДТА. Показано, что медленная кинетика гидролитической сорбции катионов в щелочном растворе не мешает быстрому извлечению в РФС ионов Сѕ(І).

По результатам совокупности полученных данных образцы смолы РФС-Т-25-м. и РФС-Са-10-м, рекомендованы для извлечения радионуклидов Cs-137 из щелочных сред с высоким содержанием Na+ (более 1 моль/л) в динамических условиях.

Научная новизна результатов диссертационной работы состоит в том, что диссертант впервые экспериментально разработал условия синтеза новых типов сорбентов на основе резорцинформальдегидных смол. Сорбенты обладают повышенными сорбционно-селективными характеристиками в отношении к ионам Cs(I) в щелочных растворах , которые обусловлены искусственно созданной пористостью на стадиях синтеза Диссертантом современными методами физико-химического анализа (ЯМР, ИК, ТГА, методы радиоактивных индикаторов, метод атомно-абсорбционной спектрометрии) детально охарактеризованы сорбционно-селективные свойства впервые синтезированных им ионитов в статике и динамике сорбции как ионов Cs(I), так и ионов-конкурентов Co(II), Cu(II), Ni(II), Cr(III). Обоснованы оптимальные характеристики синтеза пористых образцов РФС, полученных внесением неорганического наполнителя (СаСО3) и полимеризацией реакционной дисперсионной среды (толуола). получил и ввёл в научный обиход весьма большо объём оригинальных и информативных экспериментальных данных, эмпирических сорбционных зависимостей.

Достоверность результатов и обоснованность выводов. Полученные в работе результаты и установленные диссертантом численные характеристики их достоверности основаны на сочетании современных методов физико-химического анализа, микроскопии и общепринятых теоретических подходов в интерпретации результатов эксперимента. Указанное сочетание представляется обоснованным и достаточным для положительной оценки достоверности результатов диссертации.

Практическая значимость полученных результатов. Диссертант создал усовершенствованную схему синтеза резорцинформальдегидных ионообменных смол, которые отличаются от известных прототипов более высокой химической устойчивостью действию щелочей и окислителей. Установленные диссертантом закономерности формирования пористых ионитов на основе РФС позволили ему обосновать выбор новых типов пористых ионитов в качестве перспективных материалов для переработки высоко щелочных ЖРО и кубовых остатков действующих АЭС сложного химического состава.

являются богатый экспериментальный Достоинствами диссертации материал по статике, кинетике и динамике ионообменной сорбции катионов в помощью высоко полученный автором растворах, щелочных индикаторов радиоактивных методов чувствительных абсорбционной спектрометрии. Автором достигнуты блестящие результаты в получении органических ионитов с Kd более 10⁴ мл/г к ионам цезия в щелочных растворах. Рассматривая в комплексе вопросы статики и динамики

сорбции/десорбции ¹³⁷Cs(I) диссертант вплотную приблизился и к решению задачи утилизации отработанных РФС с применением щелочных окислительных растворов.

Недостатком работы является отсутствие результатов количественного описания выходных кривых динамики ионообменной сорбции Cs(I) образцами РФС и интерпретации вклада внутренней диффузии в этот процесс.

Замечания по диссертационной работе. В работе есть немногочисленные опечатки, например название раздела 4.4 на стр. 18 автореферата; в табл.4 автореферата допущена неточность с энергиями гидратации катионов. На приведённых в диссертации зависимостях коэффициента очистки K_{oq} от числа колоночных объёмов (КО), рис. 34, стр.106, рис.35, стр.107, рис.40, стр.114 указанные коэффициенты K_{oq} являются дифференциальными величинами, $K_{oq}(\text{диф}) = \Delta(K_{oq})/\Delta(KO)$, относящимися к распределению цезия в данной фракции пропущенных колоночных объёмов. Технологически значимой величиной является интегральный коэффициент очистки $K_{oq}(\text{общий})$, который характеризует всё прошедшее через колонку число колоночных объёмов от нуля до данного КО раствора: $K_{oq}(\text{общий}) = \int_0^{KO} \text{Коч}(\text{диф}) d(KO)$. $K_{oq}(\text{общий})$ определяет общий коэффициент отчистки пропущенного раствора и не имеет экстремумов в отличие от $K_{oq}(\text{диф})$, приводимого на рисунках.

Вопросы: 1.В процессе обсуждения результатов сорбции диссертант часто использует термин «выход сорбента на рабочий режим». Например, на стр.93 диссертации указано «С увеличением числа сорбционных циклов эффективность извлечения Сs-137 из дезактивирующего раствора постепенно возрастает, что, вероятно, связано с постепенным выходом ионита на рабочий режим». На стр.107, — «Главной особенностью извлечения Сs-137 в динамических условиях является постепенное увеличение значений коэффициента очистки при увеличении числа циклов, что связанно с выходом ионитов на рабочий режим». Что означает этот термин, как он связан с увеличением сорбционного сродства (энергии взаимодействия) обменных центров ионита к ионам цезия?

2. В таблице 28 диссертации приведены результаты определения термодинамических параметров ионообменного процесса, включающие ΔG , ΔH и ΔS . Как получены приведённые значения и для какой температуры системы?

Итоги диссертации достаточно полно опубликованы в 18 научных работах, включая 8 статей в журналах из перечня ВАК («Вопросы радиационной безопасности», «Радиохимия», «Radiochimica Acta», «Gels», «Materials Science»). Диссертант получил патент РФ на изобретение. Полученные

результаты представлены на 9 российских и международных научных конференциях в виде устных и стендовых докладов.

Автореферат по содержанию соответствует тексту диссертации.

Рецензируемая работа Токарь Эдуарда Анатольевича «Извлечение радионуклидов Cs-137 из высокоминерализованных щелочных сред с применением резорцинформальдегидных смол» является законченным, завершённым квалификационным исследованием, направленным на решение актуальной в фундаментальном и прикладном отношении проблемы физической химии и экологии создания отечественных селективных промышленной ионитов ДЛЯ дезактивации радиоактивных растворов и кубовых остатков щелочного состава. Работа содержит существенные элементы новизны в развитии методов синтеза и физико-химического описания свойств резорцинформальдегидных ионитов заданной пористости, сорбционной селективности к ионам цезия и химической устойчивости к растворению в окислительных щелочных растворах, в их практическом применении для решения задач радиоэкологии. Материалы диссертации научно обоснованы и представлены в удобной для чтения форме. Считаю, что диссертационная работа соответствует п.п. 2, 3 паспорта специальности 1.4.4 - Физическая химия (химические науки) и п.п. 5.4, 5.6 специальности 1.5.15 – экология (химические науки).

Содержание диссертации соответствует п.9 «Положения о порядке присуждения учёных степеней», утверждённого Постановлением Правительства РФ от 24.09.2013 г №842 с изменениями от 21 апреля 2016 г. № 335, а её автор, Эдуард Анатольевич Токарь, заслуживает присуждения учёной степени кандидата химических наук по двум специальностям: - 1.4.4. Физическая химия (химические науки) и - 1.5.15. Экология (химические науки).

Поляков Евгений Валентинович,

21. M. 2004-

Доктор химических наук, специальность 02/00.04 – физическая химия, старший научный сотрудник.

Федеральное государственное бюджетное учреждение науки Институт химии твёрдого тела Уральского отделения РАН

Заместитель директора института по научной работе, главный научный сотрудник, заведующий лабораторией физико-химических методов анализа.

620108, г. Екатеринбург, ул. Первомайская 91

Телефон: (343)3744814, сот. тел. +79222111665, эл. почта: polyakov@ihim.uran.ru

Подпись Полякова Е.В. заверяю:

учёный секретарь ИХТТ УрО РАН,

к.х.н.

Е.А. Богданова